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Regular and singular asymptotic methods are applied to one- and two-dimensional integral equations 

of the first kind that arise. in the treatment of various two-dimensional axisymmetrical and three- 

dimensional problems with mixed boundary conditions in the mechanics of continuous media. 

ASYMFTOTIC methods have several advantages: universality, the analytical form of the solutions 
obtained and the simplicity of further qualitative and quantitative analysis. Since problems 
with mixed boundary conditions can usually be reduced to the solution of integral equations, 
the latter are the real object of attention in this paper, where it is proposed to use asymptotic 
methods to investigate them. Later a few typical integral equations (IEs) will be considered 
[l-11]. 

1. TWO-DIMENSIONAL PROBLEMS AND A 
PROBLEMS 

Consider the IE 

FEW THREE-DIMENSIONAL 

(1.1) 
WGl, kG(OP), f(X)EHP(-l,l), CD; 

k(t) = j%XXutdu 
0 u (1.2) 

(H;(-g, p) is the space of functions whose m th derivatives satisfy a Holder condition with 
exponent a for IX kp). The function L(u) is continuous and positive for u ~(0, -), and it 
satisfies the following asymptotic equalities 

W)=Au+O(u3) (u+O, A=const>O) (1.3) 

L(U)=l+‘~‘~+O 1 (U+m, Bi =COllSt) 
i=l u‘ ( 1 U 
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We shall also assume that L(u)u-’ and dL(u)r’, being functions of the complex variable 
w=u+iz), are regular in strips l~ldy, and Lilly,, respectively. Hence it follows, in 
particular, that the kernel k(t) decreases at infinity at least as rapidly as exp(-y, It I). 

We consider the Hilbert space H(-1, 1) with norm 

where Q(a) is the Fourier transform of the function q*(x) (cp*(x)= cp(x) for Ixkl and 
cp * (x) = 0 for I x I> 1). Using Riesz’s theorem on the form of bounded linear functionals, one 
can show that the solution of IE (l.l), (1.2) in H(-1, 1) exists and is unique for any h E (0, -); it 
is in fact 

cp(x) = w(x>(l- x*)-% o(x) E C(-1,l) (1.5) 

The equation is well posed, in the sense that 

From (1.3) we obtain a representation for the kernel (1.2) 

k(t) = ~ Uit2’ + 111,4 bilZi + Inlrli~~ Cifzi (1.7) 
i=O 

where c,, = -1 and the series converges uniformly for It kp, p6 00. It follows from the 
structure (1.7) of k(r) that for sufficiently large h the solution of IE (1.1) may be written as 

N-i i 

cp(x) = ifb jzo%j (xWi (In 9’ + al-N a w 1 (14 

Substituting (1.7) and (1.8) into (l.l), we obtain a system of IEs for the successive determin- 
ation of the functions of the type 

-~t9(5)1n~J$+ = V(X) (1x1 g 1) (1.9) 

As such equations can be solved in closed form for any g(x) EHF(-~, l), the regular 
asymptotic expansion (1.8) can actually be constructed to within any desired accuracy. For 
practical purposes it is usually sufficient to retain terms of the order of h4, in which case the 
solution (1.8) of Eq. (1.1) will be valid throughout the range h 2 sup(2, Up). 

Consider the system of two IEs 

(1.10) 

The functions A(x) and h(x) are such that 

fi(x) = 0(eP9”) (x + 00, al > 0) 

f2(x) = O(eazX) (x + -9 a2 > 0) 

fi (4 + fi(x) = f(x) (I4 c 1) 

(1.11) 
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When the last of conditions (1.11) is satisfied, the solution of IE (1.1) can be found as the 
sum of solutions of IEs (l.lO), i.e. 

It can be shown that the first two conditions (1.11) imply 

cpI(x)=O(emhx) (x+=, f3, :,O) 

cpzfx) = O(e&*) (x + -m, & > 0) 

(1.13) 

If the function fTn) in IE (1.1) is even or odd, then 

fib) = wit-x), 91 (xl = Q?L(-x) (1.14) 

In both these cases the system of IEs (1.10) reduces, via obvious substitution, to a single IE 

(1.15) 

We shall always take the “plus” sign for the even case and the ‘minus” for the odd case. 
It is obvious from expansion (1.7) that the kernel k(r) has a logarithmic singularity at zero. 

In addition, it disappears exponentially at infinity. Taking these factors into account, together 
with the first relation of (1.13), one can show that the following asymptotic estimate holds 
uniformly in t 

k@N(; ) -r-2 dz=O(e-2~‘k) 
21x 

(1.16) 

By (1.16), the IE (1.15) can be solved for small h by successive approximations, dropping the 
integral on the right in the zeroth approximation. When that is done, each iteration requires 
the solution of an IE of the form 

[v(+r)c(z - r)dT = d(r) (0 G r < -) (1.17) 

Such IEs can be solved in closed form by the Wiener-Hopf method. One can therefore 
actually construct a singular asymptotic expansion of IE (1.1) for small h as 

,(x,=,($q,,($q (1.18) 

to within any desired accuracy. For practical purposes, it is usually sufficient to consider the 
zeroth approximation, i.e. to take as y(t) a solution of IE (1.17) for Z(r) = h(t). This approx- 
imate solution holds throughout the range h G sup(2, Up). 

Thus, the regular asymptotic method for large h and the singular asymptotic method for 
small h cover the entire range of variation of h guaranteeing a complete analytic solution of 
any problem that can be reduced to an IE of type (l-l), (1.2). 
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2. AXISYMMETRICAL PROBLEMS AND THE FIRST HARMONIC 

Consider the IE 

(2-l) 
0 c r G 1; h E (O,m); n = 0,l; f(r) E H;-o(S) 

(2.2) 

where S is a circle of unit radius, J,(n) the Bessel function and L(U) has the properties 
described above. 

Introducing the Hilbert space H(S) with norm 

(2.3) 

where @(a) is the Hankel transform of cp*( r) (cp* (r) = p(r) in S and cp* (r) = 0 outside S), one 
can show, using Riesz’s theorem, that IE (2.1) and (2.2) has a unique solution in H(S) for any 
h E (0, -), of the form 

q(r) = o(r)(l- r)-%, Nr) E C(S) (2.4) 

Moreover, the equation is well posed in the sense of (1.6). 
The IE (2.1) and (2.2) for n = 0 can be reduced to an equivalent IE 

m(t) = j~(u)cosud4 
0 

where the even functions v(x) and g(x) are related to q(r) and f(r) by the equations 

(2.5) 

(2-6) 

(2.7) 

For n = 1 IE (2.1) and (2.2) may also be reduced to an equivalent IE (2.5) and (2.6) where 
now the odd functions v(x) and g(x) are related to cp(r) and f(r) by 

(2.8) 

Asymptotic solutions of IE (2.5) and (2.6) for large and small h, together covering the entire 
range of variation of h may be constructed along the same lines as was done above for IE (1.1) 
and (1.2). In particular, we note that, by (1.3), the kernel (2.6) may be represented as 

m(f) = d(t)+ i!oii12’ +l~~,io&42i + l#(i~ozif2i 

‘= 
(2.9) 



where th@ series are uniform& mmrg’gerrt for It f< & 8 G W, 6(r) being the delta-f~~~~~~. It is 
clear from (2.9) that for large h a solutlncm of IE (2.5) must again be &ought in the form (1.8); 
but them is no need to solve an IE of the type (1.9) 

3, THREE-DIMBNSIONAC PBdf3tEMS 

For pr&Sxl purpose it is usually sufficient to truncate the se&$ for q(x, y) by omitting 
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terms of order higher than X4; this covers the range X > sup(2, 2/p). 
The treatment of IE (3.1) for small A cannot be considered directly, since it is not h itself that 

must be small, but a certain parameter p (p 2 h) related to the geometry of Q. Let 0 be a 
convex domain (the case of non-convex 1(2 is more difficult and requires the use of results from 
[2]) and let a be the minimum radius of curvature of its contour L. Define u by p = h/a. We 
have l.t = h only when Q is a circle. 

Let S&, and 0, be domains, defined, respectively as the loci of the points in Sz whose 
distances from the contour along the normal are at least a(1 - 0) and a(1 - E), E > 0. For small 
values of p one can construct a degenerate solution of IE (3.1) in the form 

(3.7) 

The last integral must be interpreted in the generalized sense. 
To construct a solution of the boundary-layer type in the domain R-C?,,, we rewrite Eq. 

(3.1) in the form 

(3.8) 

and consider points (x, y) E Q - 0,. We get the following estimate for the last integral in (3.8) 

(3.9) 

Draw the normal from a point A (x, y) E R-R, to L. Let the length of the normal be n and its 
point of intersection with the contour B(x,, yl). Take a point 0(x,,, y,J on L as reference point 
and measure the distance s between the points 0 and B along L The numbers n and s will be 
the new coordinates of A in the curvilinear system of coordinates (n, s) Provided that 
-I /2 < s G l/2 (where 1 is the perimeter of L), each pair of numbers (x, y) in the domain Q--Q, 
will correspond to just one pair of numbers (n , s) and conversely. 

By (3.8), the IE (3.8), written in (n, S) coordinates, is 

(3.10) 

04 bG l/p, ]c]Q k/p 

b=n/h, c=s/X, r= @--b)*+(y-c)*, 

CP@.Y) = cp(S.rl), f(b,c) E f&r) 

Now, letting u tend to zero in (3.10), we obtain the following 
solution 

34 7 cp(B.y)RWdy 
-en 

+f(b,c) (OS b<m, 

k=1/(2a) 

IE for a boundary-layer type 

]c] c -) (3.11) 
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Equation (3.11) may be solved in closed form by using Fourier transforms of functions of c 
and then applying the Wiener-Hopf method. 

Define the relative thickness of the boundary layer as H = b,lh, where b,, may be deter - 
mined, e.g. by the condition 

max,&p(bo,cJ- cp’(b~,c)llcp’(b~,c)l~’ ) = 0.025 (3.12) 

with cp*( b, c) the principal part of tp(b, c) as 6 + M- this is identical with cp(x, y) when the 
latter is given by (3.7). The boundary layer should obviously be included in the domain n-Q,-,, 
so that the range of the parameter p is bounded by l.t < N-‘. 

In conclusion, we mention that asymptotic methods have also been used with success in 
dealing with various non-linear problems of mechanics with mixed boundary conditions; see, 
for example [13]. 
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